Problem Set 5

It's OK to work together on problem sets.

1. Starr's General Equilibrium Theory, problem 7.2.

2. Consider an Edgeworth Box for two households. The two goods are denoted x, y. The households have identical preferences:

$$
\begin{aligned}
& (x, y) \succ\left(x^{\prime}, y^{\prime}\right) \text { if } 3 x+y>3 x^{\prime}+y^{\prime}, \quad \text { or } \\
& (x, y) \succ\left(x^{\prime}, y^{\prime}\right) \text { if } 3 x+y=3 x^{\prime}+y^{\prime} \text { and } x>x^{\prime} \text {. } \\
& (x, y) \sim\left(x^{\prime}, y^{\prime}\right) \text { only if }(x, y)=\left(x^{\prime}, y^{\prime}\right) .
\end{aligned}
$$

They have identical endowments of $(10,10)$. Demonstrate that there is no competitive equilibrium. Is this example a counterexample to Theorem 7.1 (does it demonstrate that Theorem 7.1 is false?) ? Explain.
3. Consider a small economy, with two goods and three households. The two goods are denoted x, y. The households have identical preferences described by the utility function
$u(x, y)=\sup [x, y]$. Where sup indicates the supremum or maximum of the two arguments. Demonstrate that these preferences are nonconvex; they do not fulfill Starr's General Equilibrium Theory assumptions C.VI or CVII.

The households have identical endowments of $(10,10)$. Demonstrate that there is no competitive equilibrium in this economy [Hint: Show that price vector $(1 / 2+\varepsilon, 1 / 2-\varepsilon), \varepsilon>0$, cannot be an equilibrium; similarly for $(1 / 2-\varepsilon, 1 / 2+\varepsilon)$; and finally $(1 / 2,1 / 2)$. That pretty well takes care of it.]
4. Starr's General Equilibrium Theory problem 7.6, parts (i), (ii). Part (iii) is rewritten below. "competitive equilibria" means "competitive general equilibria."
(iii) Assuming in addition continuity of $\tilde{Z}(\mathrm{p}), \mathrm{Q}$ has a fixed point $\mathrm{p}^{*} \in \mathrm{P}$ so that $\mathrm{Q}\left(\mathrm{p}^{*}\right)=\mathrm{p}^{*}$. Does this prove that under these assumptions the economy has a competitive general equilibrium?
5. Let $\mathrm{f}: \mathrm{P} \rightarrow \mathrm{P}$, f continuous. Define $\mathrm{Z}(\mathrm{p})=\mathrm{f}(\mathrm{p})-\left[\frac{\mathrm{p} \cdot \mathrm{f}(\mathrm{p})}{\mathrm{p} \cdot \mathrm{p}}\right] \mathrm{p}$. The term in square brackets is just a scalar multiplying the vector p. Show that $p \cdot Z(p)=0$. Z is a continuous function, $\mathrm{Z}: \mathrm{P} \rightarrow \mathrm{R}^{\mathrm{N}}$. Why? Assume there is a competitive
equillibrium price vector p^{*} so that $\mathrm{Z}\left(\mathrm{p}^{*}\right)=0$ (the zero vector; ignore excess supplies of free goods). Is p^{*} also a fixed point of f so that $f\left(p^{*}\right)=p^{*}$? Review Theorem 11.2 in Starr’s General Equilibrium Theory to see what you've demonstrated.

