Problem Set 5

It's OK to work together on problem sets.

1. Starr's *General Equilibrium Theory*, problem 7.2.

2. Consider an Edgeworth Box for two households. The two goods are denoted x, y. The households have identical preferences:

 $(x, y) \succ (x', y')$ if 3x + y > 3x' + y', or $(x, y) \succ (x', y')$ if 3x + y = 3x' + y' and x > x'. $(x, y) \sim (x', y')$ only if (x, y) = (x', y').

They have identical endowments of (10, 10). Demonstrate that there is no competitive equilibrium. Is this example a counterexample to Theorem 7.1 (does it demonstrate that Theorem 7.1 is false?) ? Explain.

3. Consider a small economy, with two goods and three households. The two goods are denoted x, y. The households have identical preferences described by the utility function

u(x, y) = sup [x, y]. Where sup indicates the supremum or maximum of the two arguments. Demonstrate that these preferences are nonconvex; they do not fulfill Starr's *General Equilibrium Theory* assumptions C.VI or CVII.

The households have identical endowments of (10, 10). Demonstrate that there is no competitive equilibrium in this economy [Hint: Show that price vector $(^{1}/_{2} + \varepsilon, ^{1}/_{2} - \varepsilon)$, $\varepsilon > 0$, cannot be an equilibrium; similarly for $(^{1}/_{2} - \varepsilon, ^{1}/_{2} + \varepsilon)$; and finally $(^{1}/_{2}, ^{1}/_{2})$. That pretty well takes care of it.]

4. Starr's *General Equilibrium Theory* problem 7.6, parts (i), (ii). Part (iii) is rewritten below. "competitive equilibria" means "competitive general equilibria."

(iii) Assuming in addition continuity of $\tilde{Z}(p)$, Q has a fixed point $p^* \in P$ so that $Q(p^*)=p^*$. Does this prove that under these assumptions the economy has a competitive general equilibrium?

5. Let f:P \rightarrow P, f continuous. Define Z(p)= f(p) - $\left[\frac{p \cdot f(p)}{p \cdot p}\right]p$. The term in

square brackets is just a scalar multiplying the vector p. Show that $p \cdot Z(p) = 0$. Z is a continuous function, Z:P $\rightarrow R^N$. Why? Assume there is a competitive Economics 113 UCSD

equillibrium price vector p^* so that $Z(p^*) = 0$ (the zero vector; ignore excess supplies of free goods). Is p^* also a fixed point of f so that $f(p^*) = p^*$? Review Theorem 11.2 in Starr's *General Equilibrium Theory* to see what you've demonstrated.